If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9x-23=0
a = 1; b = 9; c = -23;
Δ = b2-4ac
Δ = 92-4·1·(-23)
Δ = 173
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{173}}{2*1}=\frac{-9-\sqrt{173}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{173}}{2*1}=\frac{-9+\sqrt{173}}{2} $
| (x*7)*(x*1.5)=7.5 | | 2x+13=58 | | ((x*7)*(x*1.5))=7.5 | | 2x=13=58 | | 4x-8=58 | | -0.18c=14 | | 3x=120-6x | | (x*7)+(x*1.5)=7.5 | | (x*7)+(x*1.5)=x*10.5 | | ((x*7)+(1*1.5))*10.5=x | | 10x+(8x-16)+(12x-8)+(7x+2)+(9x+4)+(6x+10)=x | | 900=b^2 | | 33=2x^2 | | 9(y^2+4y+36)=0 | | 2x-21=-3 | | 2x+63=3x+24 | | 4.a=36 | | 6.y=42 | | (25x-13)-(360-(25x-13))=2(8x-6) | | 3x-4/6-1/3=1/2x | | (25x-13)-(360-(25x-13))=8x-6 | | (25x-13)-((360)-(25x-13))=8x-6 | | 2x^2+0.2x-0.01=0 | | (360)-(25x-13)=98 | | (360-25x-13)=98 | | (25x-13)-(98)=164 | | (25x-13)-(360-25x-13)=164 | | 15=9y-2y-6 | | (25x-13)-(360-25x-13)=2(8x-6) | | (25x-13)-(360-25x-13)=2(6x-6) | | 3/4x3+2=11 | | x*0.7=12932 |